If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-9=51
We move all terms to the left:
6x^2-9-(51)=0
We add all the numbers together, and all the variables
6x^2-60=0
a = 6; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·6·(-60)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*6}=\frac{0-12\sqrt{10}}{12} =-\frac{12\sqrt{10}}{12} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*6}=\frac{0+12\sqrt{10}}{12} =\frac{12\sqrt{10}}{12} =\sqrt{10} $
| d+-5.2=-8.2 | | 3x-x+4=42x+1 | | 120=0.2x | | -4.5=r-3.3 | | 11x+28x+7=180 | | (7)/(2x)+(6)/(4x)=(5x)/(4) | | 4x+18-5=41 | | -2x(3x-4)=-4x | | 22x+25-16x=85 | | 4x+50=10x-76 | | 5y+2y+7=-14 | | 6(-6x+6)=432 | | x9+16=20 | | 13-+7+2x-1=180 | | 0.2(5x+30)=1.0(x+6) | | 2x+36=7 | | x+5-2=6x+3x | | 10y-5y-11=93.55 | | (8x-73)=(6x-33) | | 55+15+0.25x=45+0.35 | | 9y-4y-12=69.95 | | 8(x+5)+6=46 | | 13y-10y-15=45.36 | | 1/6y-3=-15 | | 8x-10-4x=-1/2(12x-20) | | 5m+3/4=12 | | -25-9-8h=-25 | | 9−2w=19 | | 3(6x-1)=-165 | | 20-2/3x=40 | | -10(-2x+4)-2x=32 | | 5+0.25(-4x+20)=3 |